Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Andrew D. Burrows, Ross W. Harrington*‡ and Mary F. Mahon

Department of Chemistry, University of Bath, Claverton Down, Bath BA1 7AY, England

‡ Current address: School of Natural Sciences, Bedson Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, England.

Correspondence e-mail: r.w.harrington@ncl.ac.uk

Key indicators

Single-crystal X-ray study T = 170 KMean $\sigma(O-N) = 0.002 \text{ Å}$ R factor = 0.022 wR factor = 0.056Data-to-parameter ratio = 16.1

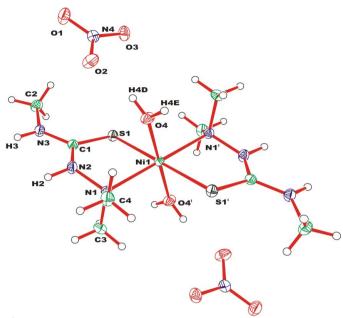
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(1,1,4-trimethylthiosemicarbazide)-nickel(II) dinitrate

The determination of the crystal structure of the title compound, $[Ni(C_4H_{11}N_3S)_2(H_2O)_2](NO_3)_2$, reveals a distorted octahedral geometry around the Ni centre, which lies on an inversion centre, with water molecules occupying the axial positions. Hydrogen bonding is observed between the 1,1,4-trimethylthiosemicarbazide NH groups and the nitrate anions, and also between the coordinated water molecules and the anions.

Received 12 January 2005 Accepted 26 January 2005 Online 19 February 2005

Comment


The title compound, (I), was formed as part of our investigations into the crystal engineering of nickel bis(thiosemicarbazide) dicarboxylates, in which the Ni-containing cations and dicarboxylate anions are linked through charge-augmented hydrogen bonds (Allen *et al.*, 1999; Burrows *et al.*, 2000, 2004).

The asymmetric unit in (I) consists of a nickel(II) centre, to which is co-ordinated one 1,1,4-trimethylthiosemicarbazide ligand, *via* the S and dimethylamine N atoms, and one water molecule. A nitrate anion completes the asymmetric unit. The remainder of the molecular unit is generated by transformation through a crystallographic inversion centre, on which the metal is located. The structure of (I) is shown in Fig. 1.

The geometry around the Ni centre is distorted octahedral, with bond angles ranging from 82.95 (3) to 97.05 (3)°. Each nitrate anion forms hydrogen bonds to three separate Ni^{II} species. The presence of parallel N—H donors (D) on the 1,1,4-trimethylthiosemicarbazide ligand and parallel O acceptors (A) on the nitrates facilitates the formation of DD:AA interactions, graph set $R_2^2(8)$ (Etter, 1990), which link the cations and anions. Each of the remaining AA faces of the

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Figure 1 A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by small spheres. [Symmetry code: (i) x + 1, y + 1, z + 1.]

nitrates is involved in a single $O-H\cdots O$ interaction with coordinated water molecules

The combination of the DD:AA hydrogen bonds with one such O-H···O interaction results in the formation of 'slipped' hydrogen-bonded chains along the crystallographic a axis, as illustrated in Fig. 2. Within the chains are hydrogenbonded rings of graph set $R_4^2(16)$. The 'slipped' description of these chains is relative to chains observed in networks formed from reactions with linear dicarboxylates, such as fumarate or terephthalate, where the cations are linked solely via DD:AA interactions to the anion carboxylate groups (Allen et al., 1999; Burrows et al., 2004). The formation of the three-dimensional structure is faciliated by the second O-H···O interaction, graph set $R_6^5(23)$, illustrated in Fig. 3. Thus all of the hydrogenbond donors are satisfied. By contrast, not all of the hydrogenbond acceptors available to the O atoms of the nitrate anion are utilized, O2 being the only atom to form two interactions, with atoms H3 and H4B. In the cases of atoms O1 and O3, only one hydrogen bond is formed. Details of the hydrogen bonding are given in Table 1.

Experimental

Equimolar aqueous solutions of bis(1,1,4-trimethylthiosemicarbazide)nickel(II) nitrate (Burrows et al, 2004) and the sodium salt of either succinic or itaconic acid were allowed to evaporate slowly over a period of two weeks. In both cases, the formation of green crystals of (I) resulted. Analysis by single-crystal X-ray diffraction revealed the identity of the products and confirmed that the dicarboxylate was not incorporated into the crystalline material in either case.

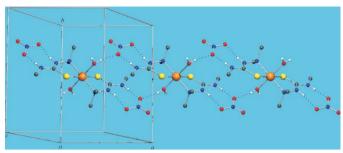


Figure 2
Interactions (dashed lines) forming hydrogen-bonded chains in (I).

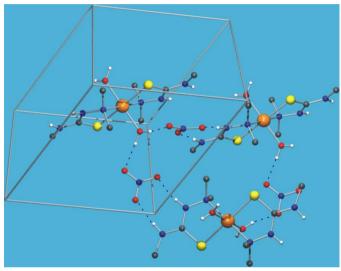


Figure 3 Hydrogen-bond interactions (dashed lines) in the formation of the $R_6^5(23)$ graph set.

Crystal data

-	
[Ni(C ₄ H ₁₁ N ₃ S) ₂ (H ₂ O) ₂](NO ₃) ₂	$D_x = 1.593 \text{ Mg m}^{-3}$
$M_r = 485.20$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1024
a = 9.464 (2) Å	reflections
b = 12.358 (2) Å	$\theta = 4.1 - 27.5^{\circ}$
c = 9.775 (2) Å	$\mu = 1.22 \text{ mm}^{-1}$
$\beta = 117.7671 \ (13)^{\circ}$	T = 170 (2) K
$V = 1011.60 (4) \text{ Å}^3$	Block, green
Z = 2	$0.30 \times 0.30 \times 0.30 \text{ mm}$

Data collection

Nonius KappaCCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\min} = 0.697, T_{\max} = 0.697$
15 566 measured reflections

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.022$
$wR(F^2) = 0.056$
S = 1.06
2317 reflections
144 parameters
H atoms treated by a mixture of
independent and constrained
refinement

Breen, green
$0.30 \times 0.30 \times 0.30 \text{ mm}$
2317 independent reflections
2203 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.025$
$\theta_{\rm max} = 27.5^{\circ}$
1. 10 . 10

 $= -15 \rightarrow 16$

$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^{\ 2}) + (0.0213P)^2 \\ &+ 0.4059P] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} &< 0.001 \\ \Delta\rho_{\rm max} &= 0.26 \text{ e Å}^{-3} \\ \Delta\rho_{\rm min} &= -0.26 \text{ e Å}^{-3} \\ \text{Extinction correction: } SHELXL97 \\ \text{(Sheldrick, 1997)} \\ \text{Extinction coefficient: } 0.0133 \ (16) \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O4-H4A···O3i	0.862 (15)	1.913 (15)	2.7703 (14)	173 (2)
$O4-H4B\cdots O2$	0.847 (15)	1.875 (16)	2.7074 (14)	167 (2)
$N2-H2\cdots O1^{ii}$	0.866 (13)	2.103 (14)	2.9565 (16)	168.6 (15)
$N3-H3\cdots O2^{ii}$	0.867 (13)	1.990 (14)	2.8551 (15)	175.6 (15)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x, -y + 1, -z + 1.

The positions of the water, amino and amido H atoms were located in a difference map and refined isotropically, subject to a distance restraint of 0.89 (2) Å. H atoms on all C atoms were included in calculated positions, constrained to an ideal geometry with C—H distances of 0.98 Å and with $U_{\rm iso}({\rm H})=1.5 U_{\rm eq}({\rm C})$. Each group was allowed to rotate freely about its C—N bond.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine

structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Bruker, 2001), *printCIF* and local programs.

The EPSRC is thanked for funding.

References

Allen, M. T., Burrows, A. D. & Mahon, M. F. (1999). J. Chem. Soc. Dalton Trans. pp. 215–223.

Blessing, R. H. (1995). Acta Cryst. A51, 33-37.

Bruker. (2001) SHELXTL. Version 6. Bruker AXS inc., Madison, Wisconsin, USA.

Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2000). CrystEngComm, 2, 77–81.

Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2004). *Cryst. Growth Des.* **4**, 813-822.

Etter, M. C. (1990). Acc. Chem. Res., 4, 120-126.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.